
Chapter 7
Some Asymptotics for Extremal Polynomials

Gökalp Alpan and Alexander Goncharov

Abstract We review some asymptotics for Chebyshev polynomials and orthogonal
polynomials. Our main interest is in the behaviour of Widom factors for the Cheby-
shev and the Hilbert norms on small sets such as generalized Julia sets.

7.1 Introduction

Let K ⊂ C be a compact set containing an infinite number of points and Cap(K)
stand for the logarithmic capacity of K. Given n ∈ N, by Mn we denote the set of
all monic polynomials of degree at most n.

Given probability measure µ with supp(µ) = K and 1 ≤ p ≤ ∞, we define the
n-th Widom factor associated with µ as W p

n (µ) =
infQ∈Mn ||Q||p
(Cap(K))n where || · ||p is taken

in the space Lp(µ). If K is polar then let W p
n (µ) := ∞. Clearly, W p

n (µ)≤W r
n (µ) for

1≤ p≤ r ≤ ∞; W p
n is invariant under dilation and translation of µ .

We omit the upper index for the case p = ∞. Here the values Wn(K) =
||Tn,K ||∞
(Cap(K))n

provide us with information about behaviour of the Chebyshev polynomials Tn,K on
K. In Section 7.2 we review some results in this direction.

Another important case is p = 2, where infMn ||Q||2 is realized on the monic
orthogonal polynomial with respect to µ. The sequence (W 2

n (µ))
∞
n=1 is rather con-

venient to describe measures that are regular in the Stahl-Totik sense and the Szegő
class that provides the strong asymptotics of general orthogonal polynomials. In
Section 7.3 we recall basic concepts of the theory, in Section 7.4 model examples
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of W 2
n (µ) are considered. The next sections are related to the results of the first two

authors about orthogonal polynomials with respect to equilibrium measures on gen-
eralized Julia sets. All results of the authors mentioned in this review were recently
published or submitted except Theorem 7.1, which is new.

We suggest the name Widom factor for W p
n (µ) because of the fundamental paper

[42], where H. Widom systematically considered the corresponding ratios for finite
unions of smooth Jordan curves and arcs.

For basic notions of logarithmic potential theory we refer the reader to [30], log
denotes the natural logarithm, µK is the equilibrium measure of K. Introduction
to the theory of general orthogonal polynomials can be found in [40, 34, 37, 33],
see [27] for basic concepts of Complex Dynamics and [13] for a generalization
of Julia sets. The symbol ∼ denotes the strong equivalence: an ∼ bn means that
an = bn(1+o(1)) for n→ ∞.

7.2 Widom Factors for the Sup-norm

Given K as above, by Tn,K we denote the n−th Chebyshev polynomial and by tn(K)
the corresponding Chebyshev number tn(K) := ||Tn,K ||∞. By M. Fekete and G. Szegő
we have tn(K)

1
n → Cap(K) as n→ ∞. Bernstein-Walsh inequality (see e.g. Theo-

rem 5.5.7. in [30]) implies that tn(K) ≥ (Cap(K))n for all n. Thus, Wn(K) ≥ 1 and
(Wn(K))∞

n=1 has subexponential growth (that is logWn/n→ 0). We mention two im-
portant cases: Wn(∂D) = 1 and Wn([−1,1]) = 2 for all n ∈ N.

If K is a subarc of the unit circle with angle 2α , then Wn(K)∼ 2cos2(α/4), (see
e.g. p. 779 in [36]). The circle and the interval can be considered now as limit cases
with α → π and α → 0.

By K. Schiefermayr ([31]), Wn(K)≥ 2 if K lies on the real line.
The behaviour of (Wn(K))∞

n=1 may be rather irregular, even for simple compact
sets. N. I. Achieser considered in [1, 2] the set K = [a,b]∪ [c,d] and showed that
(Wn(K))∞

n=1 has a finite number of accumulation points from which the smallest is
2 provided K is a polynomial preimage of an interval. Otherwise, the accumulation
points of (Wn(K))∞

n=1 fill out an entire interval of which the left endpoint is 2.
In the generalization of this result the concept of Parreau-Widom sets is impor-

tant. Let K ⊂ R be regular with respect to the Dirichlet problem. Then the Green
function gC\K of C \K with pole at infinity is continuous throughout C. By C we
denote the set of critical points of gC\K , where its derivative vanishes. Clearly, C is
at most countable. Then K is called a Parreau-Widom set if

PW (K) := ∑
z∈C

gC\K(z)< ∞.

It was shown recently in [18] that Wn(K)≤ 2 exp(PW (K)) for a Parreau-Widom set
K.
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In extension of Widom’s theory, V. Totik and P. Yuditskii considered in [39] the
case when K = ∪p

j=1K j is a union of p disjoint C2+ Jordan curves which are sym-
metric with respect to the real line. They showed that the accumulation points of
(Wn(K))∞

n=1 lie in [1,exp(PW (K))]. Moreover, if the values (µK(K j))
p
j=1 are ratio-

nally independent, then the limit points of Wn(K) fill out the whole interval above.
We recall that (x j)

n
j=1 ⊂ R are rationally independent if ∑

n
j=1 α jx j = 0 with a j ∈ Z

implies that a j = 0 for all j.
There are also new results [8, 38] for the case when K = ∪p

j=1K j is a union of p
disjoint Jordan curves or arcs (not necessarily smooth), where quasi-smoothness or
Dini-smoothness is required instead of smoothness.

Parreau-Widom sets have positive Lebesgue measure (see e.g. [14] for a proof).
All finite gap sets (see e.g. [15, 17]) and symmetric Cantor sets with positive length
(see e.g. [29]) are Parreau-Widom sets. Hence, in all cases considered above the
sequence of Widom factors is bounded. The second and the third author showed
that any subexponential growth of (Wn(K))∞

n=1 can be achieved and presented a
Cantor-type set with highly irregular behaviour of Widom factors. Namely [21],
1) For each (Mn) of subexponential growth there is K with Wn(K)≥Mn for all n.
2) Given σn ↘ 0 and Mn → ∞ (of subexponential growth), there is K such that
Wn j(K)< 2(1+σn j) and Wm j(K)> Mm j for some subsequences (n j) and (m j).

In the last section, we consider non Parreau-Widom sets with slow growth of
Widom factors.

7.3 General Orthogonal Polynomials

Given µ as above, the Gram-Schmidt process in L2(µ) defines orthonormal poly-
nomials pn(z,µ) = κnzn + · · · with κn > 0. Let qn = κ−1

n pn. Then ||qn||2 = κ−1
n =

infQ∈Mn ||Q||2. If K ⊂ R then a three-term recurrence relation

xqn(x) = qn+1(x)+bn qn(x)+a2
n−1 qn−1(x)

is valid with the Jacobi parameters an = κn/κn+1 and bn =
∫

x p2
n(x)dµ(x). Since

µ(R) = 1, we have p0 = q0 ≡ 1, so κ0 = 1 and a0a1 · · ·an−1 = κ−1
n .

Thus, W 2
n (µ) = (κn ·Capn(K))−1 and, in particular, for K = [−1,1] we have

W 2
n (µ) = a0a1 · · ·an−1 ·2n.
For example, the equilibrium measure dµ[−1,1] =

dx
π

√
1−x2

generates the Cheby-

shev polynomials of the first kind with W 2
n (µ[−1,1]) =

√
2 for all n, whereas for the

Chebyshev polynomials of the second kind dν = 2
π

√
1− x2 dx and W 2

n (ν) = 1.
The Jacobi parameters generate the matrix
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J =


b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .
...

...
...

...
. . .

 ,

where µ is is the spectral measure for the unit vector δ1 and the self-adjoint operator
J on l2(Z+), which is defined by this matrix.

Both (an) and (bn) are bounded sequences. Conversely, if we are given bounded
sequences (an) and (bn) with an > 0 and bn ∈ R, then, as a result of the spectral
theorem, there is a unique probability measure µ such that the associated recurrence
coefficients are (an,bn)

∞
n=0.

For a wide class of measures the polynomials pn = pn(·,µ) enjoy regular limit
behaviour. Let Ω = C \K and νpn be the counting measure on the zeros of pn.
Suppose the set K is not polar. Let us consider the asymptotics:
(i) κ

1/n
n →Cap(K)−1

(ii) |pn|1/n⇒ expgΩ (locally uniformly on C\Conv.hull(K))

(iii) limsup |pn(z)|1/n q.e.
= 1 on ∂Ω

(iv) 1
n νpn

w∗→ µK .
By Theorem 3.1.1. in [34], the conditions (i)− (iii) are pairwise equivalent. If,

in addition, K ⊂ ∂Ω and the minimal carrier capacity of µ is positive, then (i) is
equivalent to (iv).

A measure µ with support K is called regular in the Stahl-Totik sense (µ ∈ Reg)
if (i) is valid. This definition allows measures with polar support. In this case the
equivalence of (i)− (iii) is still valid if we take gΩ ≡ ∞ in (ii).

Till now there is no complete description of regularity in terms of the size of µ.
We will use the generalized version of the Erdös-Turán criterion for K of R ([34],
Theorem 4.1.1): µ ∈Reg provided dµ/dµK > 0, µK−a.e. Thus (see also [41] and
[32]), equilibrium measures are regular in the Stahl-Totik sense.

We see that µ ∈ Reg if and only if (W 2
n (µ))

∞
n=1 has subexponential growth.

7.4 Strong asymptotics

The conditions (i)− (iv) from the previous section can be considered as weak
asymptotics. For measures from the Szegő class stronger asymptotics are valid for
the corresponding orthogonal polynomials.

Suppose dµ = ω(x)dx on K = [−1,1]. Then we say that µ is in the Szegő class
(µ ∈ Sz[−1,1]) if

I(ω) :=
∫ 1

−1

logω(x)

π
√

1− x2
dx =

∫
logω(x)dµK(x)>−∞,
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which means that the integral converges for it cannot be +∞. For such measures
([35], p.297)

pn(z,µ) = κnzn + · · ·= (1+o(1)) (z+
√

z2−1)n 1√
2π

D−1
µ (z),

where the Szegő function

Dµ(z) = exp(
1
2

√
z2−1

∫ log[ω(x)
√

1− x2]

z− x
dµK(x))

is a certain outer function in the Hardy space on C\ [−1,1]. Here the square root√
z2−1 is taken such that |z+

√
z2−1|> 1 at z /∈ K.

Now z→∞ implies not only that κ
1/n
n → 2, so µ ∈Reg, but also the existence of

lim
n

W 2
n (µ) =

√
π exp(I(ω)/2)

((12.7.2) in [35]), which is essentially stronger than the fact of subexponential
growth of the sequence.

The inverse implication is also valid: if limn W 2
n (µ) exists in (0,∞) then we have

µ ∈ Sz[−1,1] (see e.g. T.2.4 in [16]).
The Szegő theory was extended first to the case of measures that generate a finite

gap Jacobi matrix (see e.g. [9, 16, 28, 42]) and then for measures on R such that the
essential support of µ is a Parreau-Widom set.

Let {y j} j be the set of al isolated points of the support of µ and K = esssupp(µ),
so supp(µ) = K ∪ {y j} j. Suppose that K is a Parreau-Widom set, so it has posi-
tive Lebesgue measure. Let ω(x)dx be the absolutely continuous part of dµ in its
Lebesgue decomposition. In addition, let ∑gC\K(y j) < ∞. Then, in our terms (see
e.g. Theorem 2 in [14]),∫

logω(x)dµK(x)>−∞ ⇐⇒ limsup
n→∞

W 2
n (µ)> 0. (7.1)

Moreover, if one of the conditions above holds then there is a positive number M
such that

1
M

<W 2
n (µ)< M,

holds for all n. Thus, any of the conditions in (7.1) implies regularity of the corre-
sponding measure.

We write µ ∈ Sz(K) if the Szegő condition on the left hand side of (7.1) is valid.
We see that this definition can be applied only to measures that have nontrivial
absolutely continuous part. On the other hand, the Widom condition (on the right
side) is applicable to any measure.

For each Parreau-Widom set K, its equilibrium measure µK belongs to Sz(K)
([14]) and the sequence (W 2

n (µK)) is bounded above ([18]). In [5, 7] the first two
authors presented non-polar sets with unbounded above sequence (W 2

n (µK)).
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The Widom condition is the main candidate to characterize the Szegő class in the
general case. In [5] it was conjectured that the equilibrium measure always is in the
Szegő class and the following form of the Szegő condition was suggested∫

log(dµ/dµK)dµK(t)>−∞

that can be used for all non-polar sets.

7.5 Widom Factors for the Hilbert Norm

Here we consider some model examples of Widom-Hilbert factors (see [7] for more
details).

1. Jacobi weight. For −1 < α,β < ∞ let

dµα,β =C−1
α,β (1− x)α(1+ x)β dx

with

Cα,β =
∫ 1

−1
(1− x)α(1+ x)β dx.

Set Wα,β :=
√

π

2α+β Cα,β

. Then W 2
n (µα,β )→Wα,β . Here, Wα,β → 0 as (α,β )

approaches the boundary of the domain (−1,∞)2 and

sup
−1<α,β<∞

Wα,β =W−1/2,−1/2 =
√

2.

We see that, in the class of Jacobi polynomials, the maximal value of I(ω) is
attained on the equilibrium measure. By Jensen’s inequality, µ[−1,1] gives the
maximum of the Szegő integral in the whole class Sz[−1,1]. Indeed,∫

log(ω/ωe)dµe ≤ log
∫

ω/ωe dµe = log
∫ 1

−1
ω(x)dx = 0,

where µ ∈ Sz[−1,1] with dµ = ω(x)dx and ωe(x) =
1

π
√

1− x2
.

2. Regular measure beyond the Szegő class. A typical example of such measure is
given by the density

ω(x) =
1+a
2π

exp(−2 t · arcsinx) · |Γ (1/2+ i t) |2
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with t =
ax+b

2
√

1− x2
, where a,b ∈ R, a≥ |b|, a+ |b|> 0. The measure generates

the Pollaczek polynomials. Here, µ is regular, as ω > 0 for |x| < 1, but since
ω → 0 exponentially fast near ±1, the integral I(ω) diverges, so µ /∈ Sz[−1,1].
In this case,

lim
n

W 2
n (µ) ·na/2 = Γ (

a+1
2

),

so the Widom factors go to zero but not very fast.
3. µ /∈Reg. Using techniques from [34], one can show that any rate of decrease, as

fast as we wish, can be achieved for the sequence (W 2
n (µ)). Namely, ( [7], Exam-

ple 5) for each sequence σn↘ 0 there exists a measure µ such that W 2
n (µ)< σn

for all n. Here, Cap(supp(µ)) does not coincide with the minimal carrier capacity
of µ.

4. Jacobi matrix with periodic coefficients (an) and zero (or slowly oscillating) main
diagonal. The periodic coefficients give a Jacobi matrix in the Szegő class. We
follow [26] here.
Let a2n−1 = a,a2n = b for n ∈ N with b > 0 and a = b+ 2. These values with
bn = 0 define a Jacobi matrix B0 with spectrum

σ(B0) = [−b−a,b−a]∪ [a−b,a+b].

The same values (an)
∞
n=1 with bn = sin nγ for 0 < γ < 1 give a matrix B with

σ(B) = [−b−a−1,b−a+1]∪ [a−b−1,a+b+1].

Then Cap(σ(B0)) =
√

ab, Cap(σ(B)) =
√

a(b+1). Let µ0 and µ be spectral
measures for B0 and B correspondingly. Then W 2

2n(µ0) = 1 and W 2
2n−1(µ0) =√

a/b. Hence, µ0 ∈ Sz(σ(B0)), as we expected. On the other hand,

W 2
2n(µ) = (

b
b+1

)n

and

W 2
2n+1(µ) = (

b
b+1

)n
√

a
b+1

.

Thus, W 2
n (µ)→ 0 as n→ ∞, µ /∈ Sz(σ(B)) and, moreover, µ /∈ Reg.

5. Julia sets generated by T (z) = z3−λ z with λ > 3 ([11]).
Iterations T0 = z, Tn = Tn−1(T ) define a Cantor-type Julia set J = supp(µJ). Let
Wk :=W 2

k (µJ). Then W3n = 1, whereas W3n−1→ ∞. Also,

W3n+1→
√

2λ/3,W3n+2→
√

2λ/3, etc.
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7.6 Weakly Equilibrium Cantor Sets

The theory of orthogonal polynomials is well developed for measures that are ab-
solutely continuous with respect to the Lebesgue measure (µ = µa), at least for the
finite gap case. There are also numerous results for measures (µ = µa + µp) that
allow nontrivial point spectrum. Here in the description of the Szegő class a condi-
tion of Blaschke-type is added. But there are only a few results for concrete singular
continuous measures, mainly they are concerned with orthogonal polynomials for
equilibrium measures on Julia sets. As we mentioned above, Parreau-Widom sets (in
particular homogeneous sets in the sense of Carleson) may have Cantor structure,
but their Lebesgue measure is positive.

There are only particular results for a prescribed measure µ supported on a Can-
tor set with zero Lebesgue measure. For example, if µ is the Cantor-Lebesgue mea-
sure or the equilibrium measure on the Cantor ternary set K0, then a little is known
except some conjectures depending on numerical results. For this case and other
attractors of iterated function systems, we refer the reader to [22, 23, 25].

The first two authors found in [5] a new family of orthogonal polynomials with
respect to the equilibrium measure on the so-called weakly equilibrium Cantor sets,
that were suggested in [20]. Here we recall the construction. Given γ = (γs)

∞
s=1 with

0 < γs <
1
4 , let r0 = 1 and rs = γsr2

s−1. We define recursively polynomials

P2(x) = x(x−1)

and
P2s+1 = P2s · (P2s + rs).

We consider the complex level domains

Ds = {z ∈ C : |P2s(z)+ rs/2|< rs/2}

with Ds↘, which allows, by the Harnack Principle, to get a good representation of
the Green function for the intersection of domains, and

Es := {x ∈ R : |P2s(x)+ rs/2| ≤ rs/2}= ∪2s

j=1I j,s.

Then the set

K(γ) :=
∞⋂

s=0

Ds =
∞⋂

s=0

Es =
∞⋂

s=0

(
2
rs

P2s +1
)−1

([−1,1])

is an intersection of polynomial preimages that provides some additional useful fea-
tures. In particular, P2s + rs/2 is the 2s−th Chebyshev polynomial on K(γ).

At least for small γ, the set K(γ) is weakly equilibrium in the following sense.
Let us distribute uniformly the mass 2−s on each I j,s for 1 ≤ j ≤ 2−s. Let λs be
the normalized in this sense Lebesgue measure on Es, so dλs = (2sl j,s)

−1dt on I j,s.
Then λs

∗→ µK(γ) provided γn ≤ 1/32 and K(γ) is not polar.
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In [21] the Widom-Chebyshev factors for K(γ) were calculated and the result
mentioned in Section 7.2 were obtained.

In [4] it was shown that, provided some restriction on the sequence γ , the equilib-
rium measure on K(γ) and the corresponding Hausdorff measure are mutually ab-
solutely continuous. This is not valid for geometrically symmetric Cantor-type sets,
where these measures are essentially different. N. Makarov and A. Volberg proved
in [24] a surprising result: the equilibrium measure for the classical Cantor set is
supported by a set whose Hausdorff dimension is strictly smaller than log2/log3.
Therefore, µK0 is mutually singular with the Hausdorff measure of the set. Later this
was generalized to Cantor-type sets of higher dimension and to Cantor repellers that
appear in Complex Dynamics.

The set K(γ) has positive Lebesgue measure if γs are rather closed to 1
4 . More-

over, in the limit case γs =
1
4 for all s we have K(γ) = [0,1].

7.7 Orthogonal Polynomials on K(γ)

The set K(γ) is non-polar if and only if

∞

∑
n=1

2−n log
1
γn

< ∞,

where the series represents the Robin constant of the set. Orthogonal polynomials
with respect to the equilibrium measure on non-polar K(γ) were considered in [5].
It is proven that the monic orthogonal polynomials Q2s coincide with the Chebyshev
polynomials of the set. Procedures were suggested to find orthogonal polynomials
Qn of all degrees and to calculate the corresponding Jacobi parameters. In addition,
it was shown that the sequence of Widom’s factors is bounded below by a positive
number (in confirmation of our hypothesis that equilibrium measures always belong
to the Szegő class in its Widom characterization).

First the authors used a technique of decomposition of zeros of P2s +rs/2 into cer-
tain groups and the approximation of the equilibrium measure µK(γ) by the normal-
ized counting measure at zeros of the Chebyshev polynomials of the set. Namely,
let νs = 2−s

∑
2s

k=1 δxk , where (xk)
2s

k=1 are the zeros of P2s + rs/2 (they are simple
and real). Then for s > m it is possible to decompose all zeros (xk)

2s

k=1 into 2s−m−1

groups, on which we can control the value of P2m + rm/2. This allows to show that∫ (
P2m +

rm

2

)
dνs = 0.

Since νs→ µK(γ) in the weak-star topology, we have that the integral∫ (
P2m +

rm

2

)
dµK(γ)
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also is zero.
Similarly it was shown that∫ (

P2i1 +
ri1
2

)(
P2i2 +

ri2
2

)
. . .
(

P2in +
rin
2

)
dνs = 0

for 0 ≤ i1 < i2 < · · · < in < s. Each polynomial P of degree less than 2s is a linear
combination of polynomials of the type(

P2s−1 +
rs−1

2

)ns−1
. . .
(

P2 +
r1

2

)n1
(

x− 1
2

)n0

.

Therefore, Q2s coincides with P2s + rs/2. In addition, the norm ||Q2s ||2 has a simple
representation in terms of (γk)

s+1
k=1 ((3.1) in [5]).

In the next step, A−type and B−type polynomials were introduced. In particular,
for 2m ≤ n < 2m+1 with the binary representation n = im 2m + · · ·+ i0, the second
polynomial is

Bn = (Q2m)im(Q2m−1)im−1 . . .(Q1)
i1 .

The polynomials B(2k+1)·2s and B(2 j+1)·2m are orthogonal for all j,k,m,s ∈ Z+ with
s 6= m. They can be considered as a basis in the set of polynomials: for each n ∈
N with n = 2s(2k+ 1), the polynomial Qn has a unique representation as a linear
combination of

B2s ,B3·2s ,B5·2s . . . ,B(2k−1)·2s ,B(2k+1)·2s .

This allows to present formulas to express coefficients of each Qn and the corre-
sponding Jacobi parameters in terms of (γk)

∞
k=1. Some asymptotics of Jacobi param-

eters were presented in Theorem 4.7: Let γs ≤ 1/6 for all s. Then lim
s→∞

a j·2s+n = an

for j ∈ N and n ∈ Z+. Here, a0 := 0. In particular, liminfan = 0.
In the last section the Widom factors for µK(γ) were evaluated. If γk ≤ 1

6 for all k,
then

liminf
n→∞

Wn = liminf
s→∞

W2s ≥
√

2

and
limsup

n→∞

Wn = ∞.

Next examples illustrate the behaviour of Widom factors:

1. If γn→ 0 then W2s → ∞. Therefore Wn→ ∞.
2. There exists γn 9 0 with Wn→ ∞. One can take γ2k = 1/6, γ2k−1 = 1/k.
3. If γn ≥ c > 0 for all n then liminfn→∞ Wn ≤ 1/2c.
4. There exists γ with infγn = 0 and liminfn→∞ Wn < ∞. Here we can take γn =

1/6 for n 6= nk and γnk = 1/k for a sparse sequence (nk)
∞
k=1. Then (W2nk )∞

k=1 is
bounded.

Later, in [6], it was shown that K(γ) is a Parreau-Widom set if and only if
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∞

∑
n=1

√
1
4
− γn < ∞.

7.8 Generalized Julia Sets

In [6] the first two authors generalized some of the results ([10], [11], [12]) by
Barnsley et al. obtained for autonomous Julia sets to more general class of sets.
Also, [6] is a generalization of [5] as K(γ) can be considered as a generalized Julia
set.

We recall some basic definitions.
Let ( fn(z))∞

n=1 be a sequence of rational functions with deg fn ≥ 2. in C. Let us
define Fn(z) := fn ◦Fn−1(z) recursively for n ≥ 1 and F0(z) = z. Then domain of
normality for (Fn)

∞
n=1 in the sense of Montel is called the Fatou set for ( fn). The

complement of the Fatou set in C is called the Julia set for ( fn). We denote them by
F( fn) and J( fn) respectively. In particular, if fn = f for some fixed rational f for all
n then we use the notations F( f ) and J( f ). To distinguish this last case, the word
autonomous is used.

We consider only polynomial Julia sets. In order to have an appropriate Julia
set in terms of orthogonal polynomials and potential theory we need to put some
restrictions on the given polynomials. Let fn(z) = ∑

dn
j=0 an, j · z j where dn ≥ 2 and

an,dn 6= 0 for all n ∈ N. Following [13], we say that ( fn) is a regular polynomial
sequence if the following properties are satisfied:

• There exists a real number A1 > 0 such that |an,dn | ≥ A1, for all n ∈ N.
• There exists a real number A2≥ 0 such that |an, j| ≤A2|an,dn | for j = 0,1, . . . ,dn−

1 and n ∈ N.
• There exists a real number A3 such that

log |an,dn | ≤ A3 ·dn,

for all n ∈ N.

If ( fn) is a regular polynomial sequence then we write ( fn)∈R. If this is the case
then, by [13], J( fn) is a compact set C that is regular with respect to the Dirichlet
problem. Thus, Cap(J( fn))> 0. Moreover, J( fn) is just the boundary of

A( fn)(∞) := {z ∈ C : (Fn(z))∞
n=1 goes locally uniformly to ∞}.

Let K = J( fn) with ( fn) ∈ R. In [6], it was shown that, for each integer n, the
monic orthogonal polynomial associated with µK of degree d1 · · ·dn can be written
explicitly in term of Fn. In [3], it was proven that the Chebyshev polynomials of
degree d1 · · ·dn on K are same up to constant terms with the orthogonal polynomials
for µK .
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In some cases the set J( fn) is real. For example this is valid for admissible (in
the sense of [19]) polynomials. Then a three-term recurrence relation is valid for
orthogonal polynomials and the corresponding Jacobi coefficients can be found by
a recursive procedure that is depicted.

Let a sequence γ be the same as in Section 7.6. If we take

fn(z) =
1

2γn
(z2−1)+1

for all n, then K1(γ) := J( fn) is a stretched version of the set K(γ). Let εk =
1
4
− γk.

By Theorem 8 in [6], the Green function gC\K1(γ) has optimal smoothness (is

Hölder continuous with the exponent 1/2) if and only if
∞

∑
k=1

εk < ∞. This completes

the analysis of smoothness of gC\K(γ) for the case of small γ in [20].

By Theorem 9 in [6], K1(γ) is a Parreau-Widom set if and only if
∞

∑
k=1

√
εk < ∞.

It is interesting to analyze the character of growth of Widom’s factor for non
Parreau-Widom sets.

7.9 Widom’s Factor for Non Parreau-Widom Sets

Here we return to Widom factors for the Chebyshev norm on K(γ). As above, let

εk =
1
4
− γk. Clearly, 0 < 1−4εk < 1. Suppose

∞

∑
k=1

εk < ∞ but
∞

∑
k=1

√
εk = ∞. (7.2)

By C we denote the product 2
∞

∏
k=1

(1− 4εk)
−1, which is finite by (7.2). Also this

condition implies that the set K(γ) is not polar and is not Parreau-Widom.

Theorem 7.1. Let γ = (γk)
∞
k=1 be a monotone sequence satisfying (7.2). Then the

bound Wn(K(γ))≤Cn holds for all n ∈ N.

Proof. By [21], for all s ∈ Z+ we have

W2s(K(γ)) =
1
2

exp

(
2s

∞

∑
k=s+1

2−k log
1
γk

)
.

Since (γk)
∞
k=1 monotonically increases, we get the inequality

W2s(K(γ))≤ 1
2γs+1

=
2

1−4εs+1
. (7.3)
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Given n ∈ N, take s ∈ Z+ with 2s ≤ n < 2s+1. If n = 2s then, by (7.3),

Wn(K(γ))≤ 2
1−4εs+1

<C.

If n 6= 2s, then there are integer numbers 0 ≤ p1 < p2 < .. . < pm ≤ s− 1 with
m≤ s such that n = 2s+2pm + · · ·+2p1 . Widom factors are logarithmic subadditive,
that is Wn+r(K)≤Wn(K) ·Wr(K). Therefore,

Wn(K(γ))≤W2s(K(γ)) ·W2pm (K(γ)) · · ·W2p1 (K(γ)).

By (7.3)we see that

Wn(K(γ)) ≤ 2
1−4εs+1

2
1−4εpm+1

· · · 2
1−4εp1+1

≤ 2s+1C/2 < nC.

This completes the proof.
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